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Outline 

  What is one-sided communication? 
  How do I do this? 
  Why would I want to? 
  Examples and success stories. 



  Partitioned Global Address Space 
  Language level parallelism as opposed to library calls 

•  Extension to C – Unified Parallel C (UPC) 
•  New feature call Co-array in Fortran 2008 (CAF) 

  Single-sided communication as opposed to two-sided MPI 
comms 

  Explicit synchronization required – this is (mostly) implicit in MPI 
  Gives compiler lots of freedom for optimization 
  Many algorithms are very naturally expressed using one-sided 

language level parallelism 
•  Handing off work/data to another pe 
•  Halo exchanges 
•  Mesh manipulation and movement 

PGAS programming 
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  Cray have been supporting CAF and UPC since the 
beginning 
•  Support on the T3E, Cray X1, X2 

  Full PGAS support on the Cray XT 
•  Cray Compiling Environment 7.0 – Dec 08 
•  Full UPC 1.2 specification 
•  Full CAF support – CAF proposed for the Fortran 2008 standard 
•  Hybrid MPI/PGAS codes supported – very important! 

  Fully integrated with the Cray software stack 
•  Same compiler drivers, job launch tools, libraries 
•  Integrated with Craypat – Cray performance tools 

PGAS and Cray 
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Cray Inc. Preliminary and Proprietary 5  

Special features of Baker relating to CAF/UPC 

  On X1 and X2, the custom processor directly emits 
addresses for any memory location in the machine. Loads/
stores can be done to any global address in the system 

  On Baker the Gemini NIC used to ‘extend’ address space of 
Opteron references to access memory on remote nodes 
•  Fortran or C compilers recognize CAF/UPC references and 

generates appropriate messages to Gemini to load from or store to 
remote memory 

•  Users can stride on local offsets or across processor space with any 
stride, including Gather/Scatter 
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Fortran 2008 - Parallel programming 

 Fortran 2008 is a natively parallel language 

 SPMD programming model 
 Simple syntax for one-sided communication 
  Image synchronization 
 Coordinated program termination 



April 09 Slide 7  

Fortran 2008 - programming model 

Executable is replicated across processors (MPI-like) 

Each instance is called an “IMAGE” 

Each image has its own data objects 

Each image executes asynchronously except when syncs are 
indicated 
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Co-array Fortran:  Basics and terminology 
 Any time a co-array appears without [ ]’s, the 

reference is to the data on the local image 
 The number inside the [ ]’s can reference any image 

in the job, including myself 
  If a reference with [ ]’s appears to the right of the =, 

it is often called a “get” 
  If a reference with [ ]’s appears to the right of the =, 

it is often called a “put” 

   What does this do?      a(:)[ri] = b(:) 
The statement copies, or “puts” a local “b” into the “a” of image  “ri” 
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CAF array syntax 
  Declaration 

  real(8), ALLOCATABLE :: rcvbuf(:,:)[:] 

  Dynamic Allocation 

! Allocate m*n elements on each processor 
  ALLOCATE( rcvbuf(m,n)[*] ) 

  Reference 

! Reference element (i,j) on processor k 
  rcvbuf(i,j)[k] 

  PE control 

  this_image(), num_images() 
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Array Example 

Real(8) a(3) 

Image 1 Image 2 Image 3 Image 4

a(1) 

a(2) 

a(3) 

a(1) 

a(2) 

a(3) 

a(1) 

a(2) 

a(3) 

a(1) 

a(2) 

a(3) 
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Co-Array Example 

Real(8) a(3)[*] 

Image 1 Image 2 Image 3 Image 4

a(1)[1] 

a(2)[1] 

a(3)[1] 

a(1)[1] 

a(2)[2] 

a(3)[2] 

a(1)[3] 

a(2)[3] 

a(3)[3] 

a(1)[4] 

a(2)[4] 

a(3)[4] 
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Fortran 2008 – Basic “Put” 

real :: s(100)[*] 
real,allocatable :: a(:)[:]     !  S and A are “co-arrays” 

allocate (a(100)[*]) 
a = 10. 
s = 11. 
mype = this_image() 

if (mype == 1)  a(:)[1] = s(:)[2] 



April 09 Slide 13  

Fortran 2008 - synchronization 
Explicit statements: 

sync all 
sync images (images) 
sync memory 
critical / end critical 
lock / unlock 

Implicit synchronization: 
allocation of a co-array 
deallocation of a co-array  (either explicit or implicit) 

RYO synchronization: 
 atomic_ref / atomic_def 
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Halo Exchange: MPI 
doubleprecision ai(ip,ihp,6)   
...   
call mpi_isend ( ai(1,1,1),   ihp*ip,   mpi_real, imgi(myp+1), & 
                        9905, mpi_comm_world, mpireq(1), mpierr ); 
call mpi_isend ( ai(1,1,2), 2*ihp*ip,   mpi_real, imgi(myp-1), & 
                        9906, mpi_comm_world, mpireq(2), mpierr ); 
call mpi_irecv ( ai(1,1,4),   ihp*ip,   mpi_real, imgi(myp-1), & 
                        9905, mpi_comm_world, mpireq(3), mpierr ); 
call mpi_irecv ( ai(1,1,5), 2*ihp*ip,   mpi_real, imgi(myp+1), & 
                        9906, mpi_comm_world, mpireq(4), mpierr ); 
call mpi_waitall ( 4, mpireq, mpistat ) 

Each PE must make a call to MPI to do BOTH the send and the receive.  Both PE’s 
must know the communication will happen and perform the message passing “at 
the right time”. 
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Halo Exchange: Co-array Fortran 

Real(8) ai(ip,ihp,6)[*] 
.... 
ai(:,:,4:4) = ai(:,:,1:1)[img(myp-1)] 
ai(:,:,5:6) = ai(:,:,2:3)[img(myp+1)] 
call sync_all() 

Simple, transparent syntax. The other PE does not need to directly 
participate 

One only needs to know there are not race conditions on the data. 
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What if one cannot change variables? 
  Subroutine dummy argument 

  SUBROUTINE fft_transpose( zstick, . . . ) 
  COMPLEX :: zstick( * ) 

  Define derived type 

  TARGET zstick 

  TYPE CAFP 
    COMPLEX, DIMENSION(:), POINTER :: p 
  END TYPE CAFP 
  TYPE (CAFP) pzstick[*] 
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What if cannot change   (cont’d) 
  Set pointer 

  pzstick%p => zstick(1:n) 
  call sync_all() 

  Reference zstick(i) on proc k 

  pzstick[k]%p(i) 
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Fortran 2008 - pointer components  
subroutine sort(t,n) 
integer :: n 
real,target :: t(n) 

type yy 
    real,pointer :: p(:) 
end type yy 
type(yy) :: image[*] 

image%p => t         !  Point at the remote data 
sync all                   !  Sync to make sure everyone has completed the pointing 
x = image[1]%p(1)  ! Reference the remote data 
… 
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CAF works very well with OpenMP 

!$omp parallel do … 
do j=1,m 
 do i=1,n 
  target(i,j)[target_proc] = source(i,j) 
enddo;enddo 

Uses all OMP threads to “put” data into 
the target location on the target 
processor. 
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What is UPC? 
  Unified Parallel C 
  Syntactic extension to Standard C 
  Designed by IDA CCS, UC-Berkeley, LANL 
  SPMD plus HPF-like data and work distribution features 
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UPC Examples 

shared double a[3][THREADS]; 

Thread 0 Thread 1 Thread 2 Thread 3

a[0][0] a[0][1] a[0][2] a[0][3]
a[1][1]
a[2][1]a[2][0]

a[1][0] a[1][2]
a[2][2]

a[1][3]
a[2][3]
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Halo Exchange: Cray UPC Subset 

shared double ai[6][ihp][ip][THREADS];   
...   
for ( j=0; j<ihp; j++ ){   

 for ( i=0; i<ip; i++ ){   
  ai[3][j][i][MYTHREAD] = ai[0][j][i][thd[myp-1]] 
  ai[4][j][i][MYTHREAD] = ai[1][j][i][thd[myp+1]]; 
  ai[5][j][i][MYTHREAD] = ai[2][j][i][thd[myp+1]]; 
 }   

} 
upc_barrier(); 

Advantages very similar to CAF. 
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Advantages of One-Sided communication 
  Easier to program (See Halo Exchange and Random Access) 

•  Don’t have to write both send and receive 

•  More transparent what is going on 

  Enables new algorithms (See Dynamic Mesh CFD from AHPCRC) 
•  Only one PE needs to do the communication.  Data can be retrieved and modified without 

coordination with PE holding the data 
•  More freedom in when and where the communication is done. 

  Reduced communication time overhead, hence better scalability (for 
supporting hardware) 

  Can spread out communications / Easier to Mix computation and 
communication 
•  Collectives like MPI_ALLTOALL concentrate communication 

•  Perhaps better to get and put data as you need it.  
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Good Practices for UPC/CAF/shmem, etc. 

  Use 4/8 byte sized shared variables 
  Code to overlap communication with computation 

  Hardware is designed to support this 
  Reduces communication hot spots 

  Try to “PUT” data instead of “GET” data 
  Avoid use of strict shared types when possible (increases 

memory synchronization requirements) 
  Try to avoid generalized scatter/gather in inner loops 

(unless overlapped with computation) 



PGAS in practice: 

Examples of how PGAS was, can, 
and will be used 

April 09 Slide 25  



Smoothing out Communication 
  MPI collectives can often focus all communication into a 

specific time and place 
  Can use CAF/UPC to spread that communication out and 

overlap with computation 
  Simplified MVH3: 

do i=1,many 
  call sweepx         !  All compute, no communication 
  call mpi_alltoall   !  Intense communication 
  call sweepy         !  All compute, no communication 
  call mpi_alltoall   !  Intense communication 
  call sweepz         !  All compute, no communication 
  call mpi_alltoall   !  Intense communication 
enddo 
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Smoothing out Communication 
  Put data to next location as you compute it 

do i=1,many 
  call sweepx_put_to_y         ! Compute, with communication spread out 
  call sweepx_put_to_y         ! Compute, with communication spread out 
  call sweepx_put_to_y         ! Compute, with communication spread out 
enddo 
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GTC: Online/asynchronies diagnostic processing* 
  GTC requires diagnostic to be run at the same time as 

simulation 
•  Too much data to store for post-processing 
•  Does not need to prevent the simulation from proceeding 

  One group of processors can process data while main 
simulation process 
•  How does one coordinate the data transfer?  
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* Thanks to Scott Klasky of ORNL for this idea 



GTC:  Online/asynchronies diagnostic processing 
 Simulation group 

do i=1,timestep 

  call main_computation 

  call check_if_diagnostic_buffer_read 

  call put_data_to_diag 

  call inform_diag_data_is_ready 

enddo 

 Diagnostic Group 

do i=1,timestep 

  call set_buffer_ready_flag 

  call wait_for_data 

  call perform_diagnostics 

  call store_diagnostic_results 

enddo 
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Simple double buffer can help reduce synchronization cost to close to zero 
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UPC Random Access:   
Designed for Speed 

  This version of UPC Random Access was originally written in 
Spring 2004 

  Written to maximize speed 

  Had to work inside of the HPCC benchmark 

  Had to run well on any number of CPUs 

  Also happens to be a very productive way of writing the 
Global RA. 
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Productivity:  Fewer lines of code 

UPC VERSION 
#pragma _CRI concurrent 
for (j=0; j<STRIPSIZE; j++)  

 for (i=0; i<SendCnt/STRIPSIZE; i++) { 
  VRan[j] = (VRan[j] << 1) ^ ((s64Int) VRan[j]< ZERO64B ? 

POLY : ZERO64B); 
  GlobalOffset = VRan[j] & (TableSize - 1); 

  if (PowerofTwo) LocalOffset=GlobalOffset>>logNumProcs ;  
  else            LocalOffset=(double)GlobalOffset/

(double)THREADS; 
    WhichPe=GlobalOffset-LocalOffset*THREADS; 
    Table[LocalOffset][WhichPe] ^= VRan[j] ; 
 } 

} 

BASE VERSION 
NumRecvs = (NumProcs > 4) ?(Mmin(4,MAX_RECV)) : 1; 
  for (j = 0; j < NumRecvs; j++)  

MPI_Irecv(&LocalRecvBuffer[j*LOCAL_BUFFER_SIZE], 
localBufferSize,INT64_DT, MPI_ANY_SOURCE, 
MPI_ANY_TAG, MPI_COMM_WORLD,&inreq[j]); 

while (i < SendCnt) { 
do { 
MPI_Testany(NumRecvs, inreq, &index, &have_done, 

&status); 
if (have_done) { 
 if (status.MPI_TAG == UPDATE_TAG) { 
   MPI_Get_count(&status, INT64_DT, &recvUpdates); 
bufferBase = index*LOCAL_BUFFER_SIZE; 
for (j=0; j < recvUpdates; j ++) { 
 inmsg = LocalRecvBuffer[bufferBase+j]; 
 LocalOffset = (inmsg & (TableSize - 1)) - 

GlobalStartMyProc; 
 HPCC_Table[LocalOffset] ^= inmsg; 
 } 
 } else if (status.MPI_TAG == FINISHED_TAG) { 
    NumberReceiving--; 
 } else { 
    abort(); 
 } 
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Productivity :  Fewer lines of code 

UPC VERSION BASE VERSION 

MPI_Irecv(&LocalRecvBuffer[index*LOCAL_BUFFER_SIZE], 
localBufferSize,INT64_DT, MPI_ANY_SOURCE, 
MPI_ANY_TAG, MPI_COMM_WORLD,&inreq[index]); 

} 
} while (have_done && NumberReceiving > 0); 
  if (pendingUpdates < maxPendingUpdates) { 
    Ran = (Ran << 1) ^ ((s64Int) Ran <   ZERO64B ? 

POLY : ZERO64B); 
    GlobalOffset = Ran & (TableSize-1); 
    if ( GlobalOffset < Top) 
      WhichPe = ( GlobalOffset / (MinLocalTableSize + 

1) ); 
   else 
    WhichPe = ( (GlobalOffset - Remainder) / 

MinLocalTableSize ); 
   if (WhichPe == MyProc) { 
    LocalOffset = (Ran & (TableSize - 1)) - 

GlobalStartMyProc; 
    HPCC_Table[LocalOffset] ^= Ran; 
   } 
   else { 
    HPCC_InsertUpdate(Ran, WhichPe, Buckets); 
        pendingUpdates++; 
   } 
   i++; 
 } 
 else { 
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Productivity :  Fewer lines of code 

UPC VERSION 
BASE VERSION 

MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE); 
   if (have_done) { 
    outreq = MPI_REQUEST_NULL; 
    pe = HPCC_GetUpdates(Buckets, LocalSendBuffer, 

localBufferSize, &peUpdates); 
    MPI_Isend(&LocalSendBuffer, peUpdates, INT64_DT, 

(int)pe, UPDATE_TAG, MPI_COMM_WORLD, &outreq); 
    pendingUpdates -= peUpdates; 
   }}} 
while (pendingUpdates > 0) { 
do { 
MPI_Testany(NumRecvs, inreq, &index, &have_done, 

&status); 
if (have_done) { 
  if (status.MPI_TAG == UPDATE_TAG) { 
   MPI_Get_count(&status, INT64_DT, &recvUpdates); 
   bufferBase = index*LOCAL_BUFFER_SIZE; 
  for (j=0; j < recvUpdates; j ++) { 
   inmsg = LocalRecvBuffer[bufferBase+j]; 
   LocalOffset = (inmsg & (TableSize - 1)) - 

GlobalStartMyProc; 
   HPCC_Table[LocalOffset] ^= inmsg; 
   } 
} else if (status.MPI_TAG == FINISHED_TAG) { 
  NumberReceiving--; 
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Productivity :  Fewer lines of code 

UPC VERSION 

BASE VERSION 
} else { 
  abort();} 
MPI_Irecv(&LocalRecvBuffer[index*LOCAL_BUFFER_SIZE], 

localBufferSize,INT64_DT, MPI_ANY_SOURCE, MPI_ANY_TAG, 
MPI_COMM_WORLD,&inreq[index]); 

}} while (have_done && NumberReceiving > 0); 
    MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE); 
    if (have_done) { 
      outreq = MPI_REQUEST_NULL; 
      pe = HPCC_GetUpdates(Buckets,     LocalSendBuffer, 

localBufferSize, &peUpdates); 
    MPI_Isend(&LocalSendBuffer, peUpdates, INT64_DT, 

(int)pe, UPDATE_TAG, MPI_COMM_WORLD, &outreq); 
    pendingUpdates -= peUpdates; 
    } } 
for (proc_count = 0 ; proc_count < NumProcs ; +

+proc_count) { 
  if (proc_count == MyProc) { finish_req[MyProc] = 

MPI_REQUEST_NULL; continue; } 
  MPI_Isend(&Ran, 1, INT64_DT, proc_count, 

FINISHED_TAG,MPI_COMM_WORLD, finish_req + proc_count); 
  } 
while (NumberReceiving > 0) { 



April 09 Slide 35  

Productivity :  Fewer lines of code 

UPC VERSION 
BASE VERSION 

MPI_Waitany(NumRecvs, inreq, &index, &status); 
if (status.MPI_TAG == UPDATE_TAG) { 
  MPI_Get_count(&status, INT64_DT, &recvUpdates); 
  bufferBase = index * LOCAL_BUFFER_SIZE; 
for (j=0; j < recvUpdates; j ++) { 
  inmsg = LocalRecvBuffer[bufferBase+j]; 
  LocalOffset = (inmsg & (TableSize - 1)) - 

GlobalStartMyProc; 
  HPCC_Table[LocalOffset] ^= inmsg; 
  } 
  } else if (status.MPI_TAG == FINISHED_TAG){ 
     NumberReceiving--; 
    } else { 
      abort(); } 
MPI_Irecv(&LocalRecvBuffer[index*LOCAL_BUFFER_SIZE], 

localBufferSize,INT64_DT, MPI_ANY_SOURCE, 
MPI_ANY_TAG, MPI_COMM_WORLD, &inreq[index]); 

} 
MPI_Waitall( NumProcs, finish_req, finish_statuses); 
HPCC_FreeBuckets(Buckets, NumProcs); 
for (j = 0; j < NumRecvs; j++) { 
    MPI_Cancel(&inreq[j]); 
    MPI_Wait(&inreq[j], &ignoredStatus); 
  } 



  MPI mode 
•  All communication and timing done using MPI calls 

  UPC mode 
•  Problem I/O, setup and initialization done using MPI 
•  Core communication (gathers, scatters, collective operations), timing 

done using UPC 

  Communication method (MPI vs UPC) is selected at 
compile-time 

  UPC was incrementally added to the code, one routine at a 
time. 

BenchC 



  Very lightweight modification to the code – little disruption 
  Create shared buffers for boundary exchanges 

•  shared double *shared buffSH[THREADS] 
•  buffSH[MYTHREAD] = (shared double *shared)upc_alloc(nec*sizeof(Element)) 

– for remote access of shared data 
•  buff = (double *) buffSH[MYTHREAD] – for local access of shared data 

Data Layout 

buffSH[0] buffSH[1] buffSH[THREADS-1] 

SHARED 

PRIVATE 

Thread  0 Thread  1 Thread  THREADS-1 

… 

N2 

… 

Nn N1 

  buff 

 buff  buff 



  Gathers/Scatters 
 …initial ordering of data… 
 ip = ep[i]; 
 for (j = 0; j < num; j++) 

      bg[iloc1 + j] = buffSH[ip][iloc2 + j]  /*collect data from across THREADS*/ 
  Broadcasts/Reductions 

 global_normSH[MYTHREAD] = loc_val; 
 if (MYTHREAD == 0){ 
  for (ip = 1; ip < THREADS; ip++) loc_val +=global_normSH[ip]; 
  for (ip = 0; ip < THREADS; ip++) global_normSH[ip] = loc_val; 
 } 

   Code just compiles normally 
•  cc –h upc –c –h list=ms my_upc_broadcast.c 

BenchC UPC Communication Patterns 



 664.  1-------<    for (i = 0; i < epnum; i++){ 
  665.  1               iloc1 = eploc [i]*len; 
  666.  1               iloc2 = eploc2[i]*len; 
  667.  1               num = (eploc[i+1] - eploc[i+0])*len; 
  668.  1               btSend += num*8;   /* sizeof(double) */ 
  669.  1               ip = ep[i]; 
  670.  1 
  671.  1         #pragma ivdep 
  672.  1 r----<>       for (j = 0; j < num; j++) buffSH[ip][iloc2+j] = 

      bg[iloc1+j]; 

UPC BenchC code example-Cray XT5m 

4/14/09 39  

CC-6005 CC: SCALAR File = ncommsetup.c, Line = 672 
  A loop was unrolled 8 times. 

CC-6325 CC: VECTOR File = ncommsetup.c, Line = 672 
  Although A loop was marked with an IVDEP directive, it cannot be vectorized 
  because it contains one or more operations that have no vector form. 
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41 

Dynamic-Mesh Generation 
Xflow from AHPCRC 
  Tightly Couple automatic mesh generation technology within 

parallel flow solvers 
•  Mesh generation never stop and runs in-conjunction with the flow 

solver 
•  Mech continuously changes due to changes in geometry.or other 

conditions 

Source:  PGAS presentation of Andrew Johnson of AHPCRC 



XFlow 
  Complex CFD applications have moving components and/or 

changing domain shapes 
•  Rotational geometries and/or flapping wings 
•  Most fluid-structure interaction applications 
•  Engines, turbines, pumps, etc. 
•  Fluid-particle flows and free-surface flow 

  Many methods have been developed to solve these types of 
applications 
•  None are ideal and all have limitations 

  MPI approach to “Dynamic-Mesh CFD” was unsuccessful in 
the past due to algorithm complexity (~1997 time frame) 

  Ultimate goal of “Dynamic-Mesh CFD” 
•  Mesh should be “dependent” on the solution by continuously changing 



XFlow 

  Fully integrate automatic mesh generation within the parallel flow solver 
•  Mesh generation never stops and runs in-conjunction with the flow 

solver 
  Element connectivity changes as required to maintain a 

“Delaunay” mesh 
  New nodes added as required to match user-specified refinement 

values 
  Existing nodes deleted when not needed 

•  Mesh continuously changes due to changes in geometry and/or the 
solution 
  Mesh size can grow or shrink at each time step 

  Very complicated method 
•  Parallelism (UPC), vectorization, dynamic data structures, solvers 

(mesh moving and fluid flow), general CFD accuracy, scalability, CAD 
links, etc. 

•  Will take time to fully evaluate 



XFlow 
  Mesh is distributed amongst all processors (fairly uniform 

loading) 
  Developed a fast Parallel Recursive Center Bi-section mesh 

partitioner 
  Each processor maintains and controls its own piece of the 

mesh 
•  Each processor has a list of nodes, faces, and elements 
•  Each list consists of an array of C structures (Node, Face, or Element 

arrays) 
•  These arrays are defined “shared” 

  Adds a “processor-dimension” to each array 
   elementsSH[proc][local-index].n[0-through-4] 
   elementsSH[proc][local-index].np[0-hrough-4] 
   elements[local-index].c[X] 
   elements[local-index].det 

  Can read-from, or write-to, other processors “entities” 
whenever required 



XFlow 
  What this method needs… 

•  Each processor able to reference any arbitrary elements, faces, or 
nodes across entire mesh 

•  Each processor able to modify any other processors portion of the 
mesh 

•  Each processor able to search anywhere in the mesh 
•  For performance, minimize these off-processor references by using 

smart mesh partitioning techniques 
  Why MPI is not a good fit for this method 

•  Can’t arbitrarily read-from or write-to other processors data 
•  Searches “stop” at processor/partition boundaries 

  Partition boundaries are “hard” (enforced) boundaries 
•  A processor can’t change and alter another processor’s mesh 

structure 
  Why is UPC good 

•  You can do these kinds of things 
  Need to carefully use memory/process barriers 
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Dynamic Mesh 
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One-Sided Conclusions 

 They offer improved productivity of explicit 
communication codes on all platforms 

 They enable new algorithms that are difficult to 
impossible to code using two-sided communication 

 They offer improved performance on Cray platforms 


